Information
[![Latest Number][token-length-shield]][token-length-url]
[![GitHub tag (latest SemVer)][tag-shield]][ tag-url]
[![Stars][stars-shield]][stars-url]
[![Issues][issues-shield]][issues-url]
\`\`\`
## Anatomy of LLM Context Files LLM context files in VideoDB are modular, automatically generated, and continuously updated from multiple sources: ### Modular Structure: - **Instructions** — Best practices and prompt guidelines [View »](https://github.com/video-db/agent-toolkit/blob/main/context/instructions/prompt.md) - **SDK Context** — SDK structure, classes, and interface definitions [View »](https://github.com/video-db/agent-toolkit/blob/main/context/sdk/context/index.md) - **Docs Context** — Summarized product documentation [View »](https://github.com/video-db/agent-toolkit/blob/main/context/docs/docs_context.md) - **Examples Context** — Real-world notebook examples [View »](https://github.com/video-db/agent-toolkit/blob/main/context/examples/examples_context.md)
### Automated Maintenance:
- Managed through GitHub Actions for automated updates.
- Triggered by changes to SDK repositories, documentation, or examples.
- Maintained centrally via a [\`config.yaml\`](https://github.com/video-db/agent-toolkit/blob/readme-refactor/config.yaml) file.
---
## ️ Automation with GitHub Actions
Automatic context generation ensures your applications always have the latest information:
### SDK Context Workflow ([View](https://github.com/video-db/agent-toolkit/blob/main/.github/workflows/update_sdk_context.yml))
- **Automatically generates documentation** from SDK repo updates.
- Uses [Sphinx](https://www.sphinx-doc.org/en/master/) for Python SDKs.
### Docs Context Workflow ([View](https://github.com/video-db/agent-toolkit/blob/main/.github/workflows/update_docs_context.yml))
- **Scrapes and summarizes documentation** using [FireCrawl](https://www.firecrawl.dev/) and LLM-powered summarization.
### Examples Context Workflow ([View](https://github.com/video-db/agent-toolkit/blob/main/.github/workflows/update_examples_context.yml))
- Converts and summarizes notebooks into practical context examples.
### Master Context Workflow ([View](https://github.com/video-db/agent-toolkit/blob/main/.github/workflows/update_master_context.yml))
- Combines all sub-components into unified \`llms-full.txt\`.
- Generates standards-compliant \`llms.txt\`.
- Updates documentation with token statistics for transparency.
---
## ️ Customization via \`config.yaml\`
The [\`config.yaml\`](https://github.com/video-db/agent-toolkit/blob/readme-refactor/config.yaml) file centralizes all configurations, allowing easy customization:
- **Inclusion & Exclusion Patterns** for documentation and notebook processing
- **Custom LLM Prompts** for precise summarization tailored to each document type
- **Layout Configuration** for combining context components seamlessly
\`config.yaml\` > \`llms_full_txt_file\` defines how \`llms-full.txt\` is assembled:
\`\`\`yaml
llms_full_txt_file:
input_files:
- name: Instructions
file_path: "context/instructions/prompt.md"
- name: SDK Context
file_path: "context/sdk/context/index.md"
- name: Docs Context
file_path: "context/docs/docs_context.md"
- name: Examples Context
file_path: "context/examples/examples_context.md"
output_files:
- name: llms_full_txt
file_path: "context/llms-full.txt"
- name: llms_full_md
file_path: "context/llms-full.md"
layout: |
\{\{FILE1\}\}
\{\{FILE2\}\}
\{\{FILE3\}\}
\{\{FILE4\}\}
\`\`\`
## Best Practices for Context-Driven Development
- **Automate Context Updates:** Leverage GitHub Actions to maintain accuracy.
- **Tailored Summaries:** Use custom LLM prompts to ensure context relevance.
- **Seamless Integration:** Continuously integrate with existing LLM agents or IDEs.
By following these practices, you ensure your AI applications have reliable, relevant, and up-to-date context—critical for effective agent performance and developer productivity.
---
## Get Started
Clone the toolkit repository and follow the setup instructions in [\`config.yaml\`](https://github.com/video-db/agent-toolkit/blob/readme-refactor/config.yaml) to start integrating VideoDB contexts into your LLM-powered applications today.
**Explore further:**
- [VideoDB SDK](https://github.com/video-db/videodb-python)
- [Documentation](https://docs.videodb.io)
- [Cookbook Examples](https://github.com/video-db/videodb-cookbook)
---
[token-length-shield]: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/video-db/agent-toolkit/refs/heads/main/readme_shields.json&style=for-the-badge
[token-length-url]: https://github.com/video-db/agent-toolkit/blob/main/token_breakdown.png
[tag-shield]: https://img.shields.io/github/v/tag/video-db/agent-toolkit?style=for-the-badge
[tag-url]: https://github.com/video-db/agent-toolkit/tags
[stars-shield]: https://img.shields.io/github/stars/video-db/agent-toolkit.svg?style=for-the-badge
[stars-url]: https://github.com/video-db/agent-toolkit/stargazers
[issues-shield]: https://img.shields.io/github/issues/video-db/agent-toolkit.svg?style=for-the-badge
[issues-url]: https://github.com/video-db/agent-toolkit/issues
VideoDB Agent Toolkit
AI Agent toolkit for VideoDB
llms.txt >>
llms-full.txt
MCP
## Anatomy of LLM Context Files LLM context files in VideoDB are modular, automatically generated, and continuously updated from multiple sources: ### Modular Structure: - **Instructions** — Best practices and prompt guidelines [View »](https://github.com/video-db/agent-toolkit/blob/main/context/instructions/prompt.md) - **SDK Context** — SDK structure, classes, and interface definitions [View »](https://github.com/video-db/agent-toolkit/blob/main/context/sdk/context/index.md) - **Docs Context** — Summarized product documentation [View »](https://github.com/video-db/agent-toolkit/blob/main/context/docs/docs_context.md) - **Examples Context** — Real-world notebook examples [View »](https://github.com/video-db/agent-toolkit/blob/main/context/examples/examples_context.md)
### Automated Maintenance:
- Managed through GitHub Actions for automated updates.
- Triggered by changes to SDK repositories, documentation, or examples.
- Maintained centrally via a [\`config.yaml\`](https://github.com/video-db/agent-toolkit/blob/readme-refactor/config.yaml) file.
---
## ️ Automation with GitHub Actions
Automatic context generation ensures your applications always have the latest information:
### SDK Context Workflow ([View](https://github.com/video-db/agent-toolkit/blob/main/.github/workflows/update_sdk_context.yml))
- **Automatically generates documentation** from SDK repo updates.
- Uses [Sphinx](https://www.sphinx-doc.org/en/master/) for Python SDKs.
### Docs Context Workflow ([View](https://github.com/video-db/agent-toolkit/blob/main/.github/workflows/update_docs_context.yml))
- **Scrapes and summarizes documentation** using [FireCrawl](https://www.firecrawl.dev/) and LLM-powered summarization.
### Examples Context Workflow ([View](https://github.com/video-db/agent-toolkit/blob/main/.github/workflows/update_examples_context.yml))
- Converts and summarizes notebooks into practical context examples.
### Master Context Workflow ([View](https://github.com/video-db/agent-toolkit/blob/main/.github/workflows/update_master_context.yml))
- Combines all sub-components into unified \`llms-full.txt\`.
- Generates standards-compliant \`llms.txt\`.
- Updates documentation with token statistics for transparency.
---
## ️ Customization via \`config.yaml\`
The [\`config.yaml\`](https://github.com/video-db/agent-toolkit/blob/readme-refactor/config.yaml) file centralizes all configurations, allowing easy customization:
- **Inclusion & Exclusion Patterns** for documentation and notebook processing
- **Custom LLM Prompts** for precise summarization tailored to each document type
- **Layout Configuration** for combining context components seamlessly
\`config.yaml\` > \`llms_full_txt_file\` defines how \`llms-full.txt\` is assembled:
\`\`\`yaml
llms_full_txt_file:
input_files:
- name: Instructions
file_path: "context/instructions/prompt.md"
- name: SDK Context
file_path: "context/sdk/context/index.md"
- name: Docs Context
file_path: "context/docs/docs_context.md"
- name: Examples Context
file_path: "context/examples/examples_context.md"
output_files:
- name: llms_full_txt
file_path: "context/llms-full.txt"
- name: llms_full_md
file_path: "context/llms-full.md"
layout: |
\{\{FILE1\}\}
\{\{FILE2\}\}
\{\{FILE3\}\}
\{\{FILE4\}\}
\`\`\`
## Best Practices for Context-Driven Development
- **Automate Context Updates:** Leverage GitHub Actions to maintain accuracy.
- **Tailored Summaries:** Use custom LLM prompts to ensure context relevance.
- **Seamless Integration:** Continuously integrate with existing LLM agents or IDEs.
By following these practices, you ensure your AI applications have reliable, relevant, and up-to-date context—critical for effective agent performance and developer productivity.
---
## Get Started
Clone the toolkit repository and follow the setup instructions in [\`config.yaml\`](https://github.com/video-db/agent-toolkit/blob/readme-refactor/config.yaml) to start integrating VideoDB contexts into your LLM-powered applications today.
**Explore further:**
- [VideoDB SDK](https://github.com/video-db/videodb-python)
- [Documentation](https://docs.videodb.io)
- [Cookbook Examples](https://github.com/video-db/videodb-cookbook)
---
[token-length-shield]: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/video-db/agent-toolkit/refs/heads/main/readme_shields.json&style=for-the-badge
[token-length-url]: https://github.com/video-db/agent-toolkit/blob/main/token_breakdown.png
[tag-shield]: https://img.shields.io/github/v/tag/video-db/agent-toolkit?style=for-the-badge
[tag-url]: https://github.com/video-db/agent-toolkit/tags
[stars-shield]: https://img.shields.io/github/stars/video-db/agent-toolkit.svg?style=for-the-badge
[stars-url]: https://github.com/video-db/agent-toolkit/stargazers
[issues-shield]: https://img.shields.io/github/issues/video-db/agent-toolkit.svg?style=for-the-badge
[issues-url]: https://github.com/video-db/agent-toolkit/issues